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Abstract. The nature of ι/η(1440) is analysed in the framework of the hypothesis that it represents a
single pseudoscalar resonance. Assuming that it arises due to the mixing between the glueball and the qq̄
nearby states (η, η′, and their radial excitations) two upper estimates are obtained for the partial width
Γ (ι/η(1440) → K∗K) — one for the case when ι/η(1440) is mainly a glueball and another one when it is
mainly a radial excitation of the ss̄ state. Both estimates are obtained in the chiral perturbation theory
approach taking into account the available data on the vector mesons and the pseudoscalar state K(1460),
which is interpreted as a radial excitation of the K meson. The same partial width is independently
estimated on the basis of the combined OBELIX and Crystal Barrel data on the production of ι/η(1440)
in pp̄ annihilation. Comparing the results we show that the glueball content of ι/η(1440) is suppressed
while its ss̄ radial-excitation interpretation is favoured by the data.

1 Introduction

The pseudoscalar (PS) state ι/η(1440) is traditionally con-
sidered as a probable candidate for glueballs. It was first
discovered in reaction of pp̄ annihilation in the middle of
1960-s [1]. Then it has been studied in a lot of works,
both theoretical and experimental [2]. The hypothesis of
the glueball origin of ι/η(1440) is based, mainly, on the
fact that it is copiously produced in gluon-rich reactions,
such as the J/ψ radiative decays and the pp̄ annihilation.
In addition, the glueball origin of ι/η(1440) is corrobo-
rated by the fact that it is seen in various decay modes
allowed by strong interactions but is almost invisible in
γγ collisions.

However the glueball origin of ι/η(1440) has never
been proved, since the above arguments remain rather
qualitative. Moreover, in the last years there arose a seri-
ous doubt that ι/η(1440) is really a glueball. The doubt
is caused mainly by the results of lattice calculations [3]
which predict the lowest PS glueball with appreciably
higher mass than the observed mass of ι/η(1440). Simulta-
neously, the experimental situation changed because there
appeared some new data which indicated that there might
be two overlapping PS resonances in the ι/η(1440) region.
(This question, however, is not quite clear yet [2].) If the
latter result will be confirmed then the ι/η(1440) problem
will become more intricate.

A fresh view on the problem of ι/η(1440) has been
recently proposed in [4]. In this work ι/η(1440) is consid-
ered as a single PS resonance whose nature is attributed
to the ss̄ radial excitation. Allowing its mixing with the
higher mass PS glueball, [4] describes the Mark III data
on the production of ι/η(1440) in the J/ψ radiative de-

cays. According to [4], a discrepancy with the experi-
mental works which prefer the two-resonance structure
of ι/η(1440) might be due to their use of not quite cor-
rect form of the relativistic Breit-Wigner amplitude (the
energy-dependence of the decay widths of resonances and
of some factors was not taken into account, cf. [5]).

The most significant result of [4] is, apparently, that it
suggests a way to eliminate the discrepancy between the
experimental results which indicate the glueball origin of
ι/η(1440), and the results of the lattice calculations which
predict higher masses for the PS glueball. However, the hy-
pothesis of the ss̄ origin of ι/η(1440) needs to be further
confirmed since not all available data on ι/η(1440) have
been taken into consideration in the framework of this hy-
pothesis. Moreover, the very discrepancy mentioned above
may turn out to be nonexistent, since the modern lattice
calculations [3] in reality are not model-independent as far
as the 0−+ glueball is concerned.1 So, the glueball origin
of ι/η(1440) cannot be completely excluded.

1 The point is that there are two different operators of the
0−+ glueball in the lattice approach. One of them is defined as
a set of three-dimensional loops deformed in some special way
(in order to produce the 0−+ quantum numbers) [3]. Another
operator is a strictly four-dimensional object, since it is defined
as the lattice analog of the continuous operator GµνG̃µν [6].
(The structure of the first one is BBB while the structure
of the second one is EB.) Therefore, they can generate quite
different glueball states. Reference [3] used only the first of
these two operators. One can suppose that it generates the
heavier state (which is presumably the pseudoscalar excitation
over the ground-state scalar glueball state) whereas the second
operator generates the lighter state
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In the present work we carry out further investigation
of ι/η(1440) under the assumption of its one-resonance
structure. However, in contrast to [4], we use another set
of data, namely, the data of OBELIX and Crystal Bar-
rel at LEAR on the pp̄ annihilation at rest. Moreover, we
consider both the hypotheses on the origin of ι/η(1440) —
the one according to which ι/η(1440) is mainly a glueball,
and another one according to which it is mainly a radial
excitation of the ss̄ state. Then both these hypotheses are
to be compared in the framework of the same approach.
An intermediate case, when ι/η(1440) involves compara-
ble contributions of the glueball and the excited ss̄ state,
can hardly take place, since then the mixing partner of
ι/η(1440) should be visible in the gluon-rich reactions,
but it is not the case if ι/η(1440) is a single resonance.

The main idea of the present study is to compare the
theoretical estimate of the partial width Γ (ι → K∗K)
with its experimental value. (We designate further ι/η
(1440) by a single symbol ι.) The choice of the decay
ι → K∗K is caused by a possibility of its description.
Indeed, since this decay occurs near the threshold its final
states have small kinetic energies (in the rest frame of ι).
So, the decay ι → K∗K may be described in the frame-
work of the chiral perturbation theory (χPT), which is
a model-independent method. The experimental estimate
of Γ (ι → K∗K) may be obtained with great accuracy as
well, since from the LEAR data it may be obtained with-
out taking into account the contributions of the ρρ and
ωω channels (which are little-known) to the production of
ι. (See Sect. 6 for a detailed discussion of this point.)

The structure of the present work is as follows. In
the next Section we propose a chiral effective Lagrangian
which describes PS qq̄ resonances and the PS glueball. In
Sect. 3 the vector mesons are added and the vertices of
the decays of PS states to K∗K are discussed. Section 4
shows that the chiral loops do not change the results ob-
tained in the previous sections. In Sect. 5 we obtain the
upper bound of Γ (ι → K∗K) while taking into account
the mixing of the PS states and the effect of the finite
width of the K∗ meson. In Sect. 6 the experimental value
of Γ (ι → K∗K) is estimated from the combined data of
OBELIX [7,8] and Crystal Barrel [9]. Section 7 discusses
the results. Appendix A collects the formulae which per-
mit to calculate the correction factors caused by the finite
widths of intermediate resonances. Appendix B estimates
the contribution of the decay ι → ρρ to the annihilation
pp̄ → ππι at rest. Appendix C discusses the amplitude of
the pp̄ → ππι in χPT.

2 Excited qq states and PS glueball in χPT

In order to define χPT the approach of chiral effective
Lagrangian is conventionally employed [10,11]. The fun-
damental ingredients of this approach are the interpolat-
ing fields of observable states involved in the process to
be described. The range of application of χPT is bounded
by the condition of low momenta of the initial and fi-
nal states in the center-of-mass frame (usually each three-

momentum is required to be much less than the ρ meson
mass).

Independently of the kind of the process the octet of
the lightest PS states (π,K, η) must be represented in the
chiral effective Lagrangian. Since their Goldstone nature
the interpolating fields of these states may be collected
in a unitary unimodular matrix u(φ) which takes val-
ues in the coset space SU(3)L×SU(3)R/SU(3)V [12]. Here
SU(3)L×SU(3)R is the Lagrangian chiral-group symme-
try and SU(3)V is the symmetry of the vacuum in QCD.
Under the chiral group u(φ) transforms non-linearly,

u(φ) → gL u(φ) h† = h u(φ) g†
R, (1)

with gL,R ∈ SU(3)L,R, and h = h(gL, gR, φ) is the com-
pensating SU(3)V transformation. In case of the diagonal
transformations, gL = gR = gV , h equals gV and, so, h
becomes independent on φ. Usually u(φ) is considered in
the exponential parameterization,

u(φ) = exp{iφ/F}, φ =
∑

a=1,...,8

φaλa/2, (2)

with φa and λa are the interpolating fields and the Gell-
Mann matrices, F is the universal octet decay constant.

The singlet member of the nonet of the lowest PS
states (η′) must be described as a heavy state since it
is not a Goldstone boson. Being singlet its interpolating
field, φ0, is invariant under the chiral group. However, φ0

is not invariant under the chiral U(1)A rotation [13]:

φ0 → φ0 + F0ω
0
5 . (3)

Here ω0
5 is the parameter of U(1)A, F0 is a dimensional

constant. The nature of transformation (3) is considered
in detail in [14]. Here we notice only that U(1)A transfor-
mation is the exceptional property of φ0 because all other
interpolating fields are invariant under U(1)A.

Other heavy interpolating fields, if they are not sin-
glets, are not invariant under the chiral group. For in-
stance, the octet heavy states transform like as follows
[12,15]:

R → hRh†, R =
∑

a=1,...,8

Raλa/2. (4)

Here h is the same as in (1). The singlet members of the
nonets (R0) and other SU(3)-singlets (glueballs, for in-
stance) are invariant under the chiral group. So, the chiral
symmetry is not sufficient to distinguish between different
singlet states, and additional ideas are needed to do that.
To that end we shall follow the ideas of [14] (see below).

Excluding the singlet-state problem, the transforma-
tion properties of the interpolating fields determine the
structure of the chiral effective Lagrangian. In the frame-
work of χPT the Lagrangian is represented in form of the
expansion in the derivatives of fields and the current quark
masses. The terms without the derivatives are responsible
for the mass spectrum of the observable states. In case
when the effective theory is to describe the ground-state
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PS mesons (φ0, φa), their radial excitations (P 0, P a), and
the ground-state PS glueball (G), the mass terms at order
p0 + p2 are determined by the following chiral-invariant
Lagrangian:

Lmass = − 1
2 A0 (P 0)2 − A 〈P 2〉

− 1
2M

2
0 (φ0)2 − 1

2M
2
GG

2 − q φ0G− α̃0(λ0

2 )2〈P 0P 0 χ+〉

−α0
λ0

2 〈P 0P χ+〉 − α 〈PP χ+〉 + iF
2 β0

λ0

2 〈P 0 χ−〉

+ iF
2 β〈P χ−〉 + iF

2 β̃0
λ0

2 〈φ0 χ−〉 + γ̃0(λ0

2 )2〈φ0φ0 χ+〉

+ γ0(λ0

2 )2〈φ0P 0 χ+〉 + γ λ0

2 〈φ0P χ+〉 + F 2

4 〈χ+〉. (5)

(Notice, the particular expression (5) for the Lagrangian
is not U(1)A invariant, but it may be made invariant by
means of replacing φ0 to the U(1)A-invariant combination
φ0 + F0Θ with Θ is a source of the gluon anomaly op-
erator in QCD [11,13].) In formula (5) the brackets 〈· · ·〉
mean the trace operation, λ0 =

√
2/3. Parameters A0,

A, M0, and MG describe the masses of P 0, P a, φ0, and
G, respectively. Parameter q describes φ0 − G mixing in
the chiral limit (the limit of the massless quarks and the
switched-off mass-like external field). The linear in the
current quark masses contributions are described by pa-
rameters α, β, γ’s and by quantities χ± = u†χu† ± uχ†u
[11,15]. Here χ = 2BM with B is proportional to the
condensate of quarks, and M is a mass-like external field.
Simultaneously M describes the contributions of the cur-
rent quark masses; when the external field is switched off,
M = diag(mu,md,ms). With the switched-on external
field χ± transform like P , providing thus the Lagrangian
with the chiral invariance. With the switched-off external
field χ± describe the chiral symmetry breaking. In addi-
tion, with ms 6= mu,d, χ± describe the flavour symmetry
breaking.

Now let us discuss the singlet field contributions. Note,
P 0 and G are involved not symmetrically in (5). This is
caused by the theorem [14] which states that any heavy
singlet PS interpolating field, which is different from φ0,
may not contribute both to terms which involve χ± and
to the term which describes the mixing of this state with
φ0 in the chiral limit. Due to this theorem there are two
alternative ways to involve a heavy singlet PS state to the
effective theory.

In case of the glueball state we use the possibility ac-
cording to which the chiral-limit mixing between G and
φ0 is allowed but contributions of both G and χ± to the
same terms are suppressed. This choice is caused by the
following reasons. First, the φ0 −G mixing should indeed
take place, so long as QCD is possessed of the annihilation
mechanism which permits transition between qq̄ singlet
states and gluonic colorless states. Second, in QCD the
quark-gluon interaction does not distinguish the quark
flavours. So, the interpolating field of the genuine glue-
ball should not contribute to terms which break down the
flavour symmetry. Consequently G should not contribute
to terms which involve χ±. Let us note, that we could ex-
pect the latter property to be valid not only in the next-to-

leading order but rather in the all orders of χPT. (About
the possibility to introduce the genuine-glueball interpo-
lating field, especially with taking into account the UV
renormalization in QCD, see [14].)

In case of the excited state P 0 we use another possibil-
ity according to which the φ0 − P 0 mixing is suppressed
in the chiral limit but instead the contribution of P 0 to
terms which involve χ± is allowed. This choice is caused
by the result of the reverse assumption. Indeed, let us as-
sume that there is the φ0 − P 0 mixing in the chiral limit.
Then the excited state P 0 can transform to a non-excited
state (φ0) without emission of strong-interacting massless
particles — the pions and kaons in the chiral limit. How-
ever, if there is not mass (energy) gap then such particles
should necessarily be emitted in course of any transforma-
tion of the excited state. So, the absence of the emission
contradicts to the condition that P 0 is the excited state.
Therefore, the above assumption is wrong. Notice, analo-
gously one can show that the mixing between P 0 and G
is suppressed as well. The same result follows also from
the consistency condition: after G was integrated out the
P 0 − φ0 mixing in the chiral limit would not appear if
there was not the P 0 −G mixing.

Extracting from (5) the quadratic terms we can de-
scribe the spectrum of the observable states. In the chan-
nel of pions and kaons we obtain

Lmass
(π,K) = − 1

2M
2
π(PP )π − 1

2M
2
K(PP )K

+β
[
m2

π(Pφ)π +m2
K(Pφ)K

]
− 1

2m
2
π(φφ)π − 1

2m
2
K(φφ)K . (6)

Here m2
π and m2

K are the masses of the pions and kaons,
M2

π = A + 2αm2
π and M2

K = A + 2αm2
K are the masses

of the excited states Pπ and PK . (The mixings φπ − Pπ

and φK − PK , which are controlled by β, give rise to the
corrections to the masses of order p4. As far as such cor-
rections are beyond the level of accuracy of (6), we ne-
glect these mixings.) Identifying Pπ and PK with the real
states π(1300) and K(1460) [2,16] one can estimate the
relevant parameters of the Lagrangian: A = (1.28 GeV)2,
α = 0.49.

In the isosinglet channel we obtain (with taking into
account β̃0 = 1 [14], and assuming, for simplicity, α̃0 =
(α0 + α)/2)

Lmass
(0,8,G) = − 1

2M
2
N (PNPN ) − 1

2M
2
S(PSPS)

−M2
NS(PNPS) + m2

π(PN φ̃N ) + (2m2
K −m2

π)(PSφ̃S)

− 1
2M

2
GG

2 − q φ0G− 1
2

(
M2

0 − 2γ̃0
2m2

K+m2
π

3

)
(φ0)2

− 1
2

4m2
K−m2

π

3 (φ8)2 − 2
√

2m2
π−m2

K

3 (φ0φ8). (7)

Here M2
N = 1

3 [2A0 + A + (2α0 + α)2m2
π] and M2

S =
1
3 [A0 + 2A + (α0 + 2α)(4m2

K − 2m2
π)] are the masses of

the excited states PN =
√

2/3P 0 +
√

1/3P 8 and PS =√
1/3P 0 − √

2/3P 8. Parameter M2
NS = (

√
2/3)[A0 −A+

(α0 − α)2m2
K ] describes their mutual mixing. The inter-

polating fields φ̃N and φ̃S involve parameters β’s and γ’s.
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As far as these parameters describe the next-to-leading
order of Lagrangian (5), one may neglect the differences
between these parameters because these differences are
additionally suppressed in the large-Nc expansion. So, let
us put β0 = β and γ0 = γ. In this approximation φ̃N =
γ
√

2/3φ0 + β
√

1/3φ8, φ̃S = γ
√

1/3φ0 − β
√

2/3φ8.
In the isosinglet channel it is too difficult to estimate

the parameters because of their multiplicity. Nevertheless,
the problem may be simplified if one identifies PN with
η(1295) which has been only seen in the ηππ channel [2,
17]. This identification is corroborated by the phenomeno-
logical equality M2

N ≈ M2
π and by observation that A0 =

A and α0 = α in the limit of the large Nc. The direct con-
sequence of this identification is the ideal mutual mixing
between the isosinglet PS excited states (M2

NS = 0). In
this approximation M2

S = 2M2
K −M2

π ' (1.6 GeV)2.

3 Vector mesons in χPT

Now let us involve the vector mesons (ρ, ω, ϕ,K∗) and
discuss their interactions with the PS mesons. Namely, we
shall be interested in the vertices of the kind V φφ, V Pφ
and V Gφ. To the purpose there will be needful the fol-
lowing auxiliary quantities composed on the interpolating
fields of the light PS mesons:

Γµ =
1
2

(
u†∂µu+ u∂µu

†) , uµ =
i

2
(
u†∂µu− u∂µu

†) . (8)

Since Γµ transforms inhomogeneously under the chiral
group it allows one to define the covariant derivative of
the heavy fields:

∇µR = ∂µR+ [Γµ, R]. (9)

Quantity uµ transforms homogeneously, so it is simply a
vector-like building block.

The leading-order chiral effective Lagrangian which de-
scribes V φφ interaction, and which is chiral invariant, p-
and c-parity even, is as follows [18]:

LV φφ = − ig〈Vµν [uµ, uν ]〉 − ig′〈Vµ[uµ, χ−]〉. (10)

Here Vµ is the vector-meson interpolating field, Vµν =
∇µVν − ∇νVµ is the tensor of the vector field. Notice, in
spite of the “naive” chiral counting rules which require the
chiral dimension of Lagrangian (10) to be 3, the true lead-
ing term of the Lagrangian is of order p1. Indeed, the first
term in (10) may be represented in form of the expansion

−ig〈Vµν [uµ, uν ]〉 = −ig/F 2〈Vµν [∂µφ, ∂νφ]〉 + · · · . (11)

Here the ellipsis means multi-φ contributions. Transfer-
ring one derivative from [∂µφ, ∂νφ] to Vµν and taking into
account the equation of motion ∂µVµν = −M2

V Vν + · · ·,
one can reduce the number of derivatives in (11). As a
result the true leading term of Lagrangian (10) is

L
(vertex)
V φφ = −2igV φφ〈Vµ[φ, ∂µφ]〉. (12)

Here gV φφ means the low-energy coupling constant. The
chiral corrections to (12) begin with order p3.

The chiral-invariant, p- and c-parity even Lagrangian
which is responsible for V Pφ interaction at order p1 + p3

is as follows:

LPφφ = − ig1〈Vµ[P, uµ]〉 − ig2〈Vµν [∇µP, uν ]〉
− ig3〈Vµ[∇µP, χ−]〉 − ig4〈Vµ{χ+, [P, uµ]}〉

− ig5〈Vµ{uµ, [P, χ+]}〉 − ig6〈Vµ{P, [χ+, uµ]}〉. (13)

Here under P we understand the sum of the octet fields
P a multiplied by λa/2 and the singlet fields P 0 and φ0

(the singlet fields may contribute with their own coupling
constants). Let us notice, that in (13) only the first term
of the expansion χ+ = 4BM + · · · is relevant, since all
other terms of the expansion are responsible for the higher
vertices which involve too many pseudoscalar fields (so
χ+ plays the role of a “spurion”). The leading-order V Pφ
vertex implied by (13) is as follows

L
(vertex)
V Pφ = −2igV Pφ〈Vµ[P, ∂µφ]〉. (14)

It has the chiral dimension 1 and the chiral corrections
beginning with order p3, as well as in (12).

Let us note, that the singlet fields do not contribute to
(14) since the vanishing commutator. Actually, this prop-
erty is manifestation of the well-known selection rule [19]
imposed by SU(3) symmetry for c-parity even singlet PS
state decays. However, with the symmetry is broken this
selection rule is no longer valid. Indeed, due to the last
term in (13) the decay P 0 → V φ is possible owing to the
“spurion” χ+.

The above results may be generalized for the PS glue-
ball, as well, but one has to remember that the genuine
glueball must not contribute to the χ±-involving terms.
The corrections caused by the higher derivatives must be
suppressed, too, because of the above selection rule [19].
So, in case of the glueball we have in any order of χPT

L
(vertex)
V Gφ = 0. (15)

4 Loop corrections

Strictly speaking, the above analysis may not be complete
until the chiral loop corrections are taken into considera-
tion. It is well-known that in case when only the light PS
mesons are involved the chiral loops contribute to order
pd+2 if they are calculated on the basis of order pd [11].
However, with the heavy fields are involved this picture
may change. Let us verify whether this is the case.

To begin with the analysis let us notice that in order to
derive only the leading loop corrections one not necessarily
has to observe the mixing effects caused by the current
quark masses. So, let us neglect these mixings and retain in
the Lagrangian only the φ0−G mixing, which is solely the
heavy-state mixing. Then we may immediately proceed
to the formalism of the heavy static fields with fixed four-
velocity vµ, v2 = 1 [20,21]. In this formalism virtual heavy
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states cannot be destroyed or created, but can transform
to other heavy states with almost the same four-velocity
v′

µ, with v′
µ − vµ = O(p). A transition to this formalism is

provided by the formula R(v;x) =
√

2M exp{iMvx}R(x)
whereM is a typical mass of the heavy states,2 andR(v;x)
is a low-frequency field that depends on the four-velocity.
Since four-momenta of the heavy states are of the form
P = Mv+k, with k = O(p), one gets P 2−M2 = 2M(kv)+
O(p2). So, the dependence on the large massM disappears
in the propagators of the heavy states, but appears instead
in denominators of the heavy state vertices.

Basing on this result one may estimate the order in the
chiral expansion of any chiral-loop diagram. In particular,
the chiral dimension D of a diagram with one heavy-field
line going through the diagram is [22]

D = 2L+1+
∑

d=2,4,...

(d−2)N (l)
d +

∑
d=1,2,...

(d−1)N (hl)
d . (16)

Here L denotes the number of light-meson loops, N (l)
d

(N (hl)
d ) counts the number of light-meson (heavy-and-

light-meson) vertices of the chiral dimension d. Notice that
D ≥ 2L+1, owing to (16). As applied to the vertices of the
previous section this result means that the chiral loop cor-
rections begin with order p3. Let us emphasize that this is
the same order in which the usual chiral corrections begin
with to the vertex V Pφ.

In case of the glueball-involving vertex V Gφ one has to
carry out more detailed analysis which would take into ac-
count the property that the current quark masses should
not contribute to the vertices which describe the glue-
ball interactions. Let us recall that this condition is the
external one with respect to the effective theory. So, it
must be satisfied in the presence of the chiral loops as
well as in their absence. It is clear that in the presence of
the chiral loops it may be only satisfied when there are
not chiral loop corrections to the glueball-involving ver-
tices. Really, the chiral loops always produce quark-mass-
dependent factors like mq lnmq (remember, the heavy sta-
tic fields do not form closed loops). So, since the quark-
mass dependence is suppressed in the glueball-involving
vertices, the chiral loops must not contribute to them.
The mechanism ensuring this effect consists in the prop-
erty that the vertices which involve both G and the light
PS mesons are suppressed in the effective theory. Indeed,
if in the chiral effective Lagrangian there are bare ver-
tices RG(φ)n, n ≥ 1, with R is a heavy static field, then
via the tadpole diagrams these vertices give rise to the
quark-mass-dependent factors in the renormalized vertices
RG(φ)n−2. (In case with n = 1 one might consider more
complicated diagrams which involve more than one bare

2 We suppose that the mass splitting of the heavy states is
numerically of order O(p) or less. In cases of our interest this
property takes place. Really, the mass splitting between ι and
K∗ is of order O(p), since Mι ≈ MK∗ +mK . The mass splitting
among the PS excited states and among the vector mesons is
of order O(p2) in both cases — see (6), (7), and [21]. Notice,
one may neglect such mass splittings deriving the leading loop
corrections

vertex.) Thus, so long as the quark-mass dependence is
suppressed in the vertices RG(φ)n−2, the Lagrangian ver-
tices RG(φ)n must be suppressed from the very beginning.
As a result, the full renormalized vertices RG(φ)n are sup-
pressed as well.3

Now let us discuss the chiral loop corrections to the
Lagrangian that describes the spectrum of the heavy PS
states. In accordance with (16) these corrections begin
with order p3. However the more detailed analysis shows
that the relevant diagrams are the one-loop ones of the
type of the self-energy with two V Pφ vertices. In the
leading order such diagrams contribute only to the kinetic
terms of the heavy states, which in the static-field formal-
ism are of the form iR†(kv)R. So, the p3-order loop correc-
tions manifest themselves as [1 + O(p2)]-renormalization
of the heavy-state wave functions. This effect may not
change the results of Sect. 2. It is clear, also, that it does
not change the above results about the corrections to the
vertices. The corrections that arise from the wave-function
renormalization of the light PS mesons and the vector
mesons are of the same property.

So, the above discussion shows that the chiral loops
do not change our results obtained in the quasi-classical
(loop-free) approximation. In particular, there are not chi-
ral corrections to the vertex V Gφ which is zero. The cor-
rections to the vertex V Pφ arise at order p3 which is
higher by two units as compared with the leading order p1

of this vertex. In accordance with the current practice such
corrections may be estimated as 20% of the leading-order
result. (It should be noted, that the individual one-loop
corrections, that arise from the vector-meson wave func-
tion renormalization, are relatively large [21]. Neverthe-
less, their flavour-non-symmetric parts are small. So, one
can redefine χPT attributing the common large flavour-
symmetric corrections to the leading-order result — i.e.
to the flavour-symmetric coupling constants, etc. — and
the remaining small parts of the corrections to the proper
corrections. Thus the above statement about the 20%-
estimate of the chiral corrections remains in force.)

5 Γ(ι → K∗K) in χPT

Assuming that ι arises due to the mixing of the pure glue-
ball, isoscalar lowest qq̄ states, and their radial excitations,
let us present the interpolating field of ι in form of the fol-
lowing decomposition

P ι = O ι
8φ

8 + O ι
0φ

0 + O ι
SP

S + O ι
NP

N + O ι
GP

G. (17)

3 Let us note, that the above discussion concerns one-
particle-irreducible diagrams only. Concerning one-particle-
reducible diagrams, they may well describe an interaction be-
tween the glueball and the light PS mesons, but only through
the G − φ0 mixing in the external lines outgoing from the ver-
tices. Moreover, such diagrams may yield an effective quark-
mass dependence in the glueball interactions with qq̄ states,
but only through the external-line mixing which occurs out-
side the vertices
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Here O n
j is the orthogonal mixing matrix defined on the

basis of Lagrangian (7). Further we assume O ι
N = 0, think-

ing that PN is identical with η(1295). Due to (12), (14),
(15), and (17) the amplitude of the decay ι → K∗K is as
follows

Amp (ι → K∗K) =
(√

3 gV φφO ι
8 − 1√

2
gV PφO ι

S

)
εµpµ.

(18)
Here εµ and pµ are the polarization vector and the four-
momentum of the K∗ and K. Taking into account factor
4 caused by the presence of two neutral and two charge
modes in the K∗K system, and taking into account the
equality

∑
n ε

(n)
µ ε

(n)
ν pµpν = |p|2M2

ι /M
2
K∗ where p is the

kaon momentum in the ι rest frame, we obtain the partial
width of the decay:

Γ (ι → K∗K) =
1
2π

(√
3 gV φφO ι

8 − 1√
2
gV PφO ι

S

)2
ξ |p|3
M2

K∗
.

(19)
Here ξ is a correction factor caused by the resonance prop-
erties of the K∗ meson (see Appendix 1). With Mι ap-
proaches the threshold (MK∗ +mK), ξ grows rapidly, thus
compensating partly the decrease of the phase volume. In
distance of the threshold and/or neglecting the width of
the K∗ meson, ξ approaches 1. With Mι = 1416±6 MeV,
which is the mean value of the Crystal Barrel and OBELIX
data (see below), one has ξ = 1.56− 0.21

+ 0.37. (For comparison:
with Mι = 1440 MeV, ξ = 1.07.)

Coupling constants gV φφ and gV Pφ may be estimated
on the basis of the PDG data [2]. Thus, from the vector
meson data one can obtain (with the leading χPT correc-
tions are taken into account) [23]

g2
V φφ/4π ' 2.9. (20)

Constant gV Pφ may be estimated on the basis of the data
K(1460) → ρK, K∗π [2]. With help of (7) and (14) we
obtain g2

V Pφ/4π ' 1.2, 2.6, respectively. A noticeable dif-
ference in the results may be explained by inaccuracy in
the experimental data, and by the fact that the final states
are not enough soft in the case of these decays (therefore,
the chiral corrections may be large). So, let us make use for
the constant gV Pφ the rough upper bound which numer-
ically coincides with (20) and which, we believe, should
cover the above uncertainties,

g2
V Pφ/4π < 2.9. (21)

Then we obtain the corresponding upper bound of the
width

Γ (ι → K∗K) <
(√

6 |O ι
8 | + |O ι

S |
)2 2.9 ξ |p|3

M2
K∗

. (22)

Further we consider two cases — the first one when ι is
mainly a glueball, and the second one when ι is mainly a
radial excitation of the ss̄ state. In the first case the mass
of the excited ss̄ state must be in the range or (due to the
mixing) somewhat higher than 1.6 GeV. However no PS

state has been seen in this mass range in the gluon-rich
reactions (in the channels K∗K, KK̄π). So, the excited
ss̄ state can only be weakly mixed with the PS glueball.
With this property the analysis based on Lagrangian (7)
gives estimate [14]

|O ι
8 | '

√
8

3
m2

K −m2
π

M2
ι

|O ι
0 | ' 0.1 |O ι

0 |. (23)

(Remember, there is not direct φ8 −G mixing in the La-
grangian, but this mixing may occur indirectly, via the
φ8 − φ0 and φ0 −G mixings.)

Now, let us consider the condition of the glueball qual-
ity of ι: |O ι

G| > |O ι
j |, j = 8, 0, S. Together with the trivial

probability condition |O ι
G|2 +

∑
j |O ι

j |2 = 1 it leads to es-
timate

√
6 |O ι

8 | + |O ι
S | < 0.75. As a result, with Mι =

1416 ± 6 MeV we obtain

Γ (ι → K∗K) < 8.2 ± 3.5 MeV. (24)

The error in (24) is determined as the sum (in quadra-
tures) of the statistical error caused by inaccuracy in Mι

and the systematical error caused by χPT uncertainties in
(22) and (23), which we estimate to be 20% in the ampli-
tude. Let us note, that using the more strong condition of
the glueball quality of ι one may obtain the more strong es-
timate of the width. For example, with |O ι

G|2 > ∑
j |O ι

j |2
one obtains

Γ (ι → K∗K) < 7.7 ± 3.3 MeV. (24′)

In case when ι is mainly the ss̄ excited state, the sim-
plest way to estimate the width is to put O ι

8 = 0, |O ι
S | = 1.

(Then Γ (ι → K∗K) ' 14 MeV.) However this estimate
is rather naive and cannot be realistic since the pure ss̄
excited state cannot satisfy the ι-properties. To obtain
realistic estimate one must demand [4] noticeable mix-
ing between the ss̄ excited state and the higher mass PS
glueball. However, in virtue of (7) the PS − G mixing is
only possible via the PS − φ̃S(φ0) and φ0 − G mixings.
Therefore, the PS − φ8 mixing should be noticeable, too.
Moreover, with the group factor

√
6 the contribution of

O ι
8 in (22) may turn out to be significant. However, in

contrast to the previous case, we cannot estimate it. So,
let us estimate the maximal upper bound of the width. It
follows from the possibly weakest conditions |O ι

S | > |O ι
8 |,

|O ι
S |2 + |O ι

8 |2 < 1, under which we obtain

Γ (ι → K∗K) < 87 MeV. (25)

Notice, estimate (25) is saturated when |O ι
8 | = |O ι

S | =
1/

√
2. But this condition may not be real. So, the true

value of the width is, apparently, not too close to the up-
per boundary indicated in (25). Unfortunately, we cannot
propose more strong estimate.

6 Γ(ι → K∗K) from LEAR data

The experimental value of Γ (ι → K∗K) has been pre-
sented neither in the PDG [2] nor in the original works.
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In principle, one may extract it from the available data
on the J/ψ radiative decays (Mark III, DM2) and the
pp̄ annihilation at rest (LEAR). The more preferable be-
tween them are the LEAR data (OBELIX + Crystal Bar-
rel) because these data were collected with greater statis-
tics and, what is more important, they permit to extract
Γ (ι → K∗K) without additional assumptions. Namely,
one may extract it little knowing parameters of the (prob-
able) decays ι → ρρ and ι → ωω. The point is that so long
as these decays occur under the nominal threshold, they
may be noticeable only with the large invariant mass of ι.
On the other hand, in the pp̄ annihilation at rest the cre-
ation of ι with large invariant mass is suppressed by the
phase volume, which is rapidly decreasing with the invari-
ant mass of ι is increasing. As a result, the contributions
of ρρ and ωω to the creation of ι in the pp̄ annihilation at
rest turn out to be negligible (see Appendix 2). This situ-
ation is drastically different from that which takes place in
the J/ψ radiative decays, where the invariant mass of ι is
practically unlimited by the phase volume and, therefore,
the ρρ and ωω contributions to the creation of ι may turn
out to be significant [5].

So, we shall use the OBELIX and Crystal Barrel data
only. Remember, OBELIX saw ι in the KKπ modes pro-
duced via the K∗K and in the direct three-particle de-
cays. Crystal Barrel saw ι in the ηππ modes. Under the
assumption that ι is a single resonance OBELIX presented
its results in the framework of two fits [7]. In the first fit
there were Mι = 1426 ± 2 MeV, Γι = 78 ± 4 MeV, in the
second one Mι = 1410±2 MeV, Γι = 56±6 MeV. Crystal
Barrel [9] obtained Mι = 1409 ± 3 MeV, Γι = 86 ± 10
MeV. The statistical mean values [2] of these results are
Mι = 1416 ± 6 MeV, Γι = 73 ± 4 MeV.

Crystal Barrel [9] presented the absolute branching ra-
tio B(pp̄ → ππι, ι → ηππ) = (3.3±1.0)×10−3. This result
implies

B(pp̄ → π+π−ι, ι → ηππ) = (2.2 ± 0.9) × 10−3. (26)

OBELIX [8] obtained

B(pp̄ → π+π−ι, ι → KKπ) = (1.80 ± 0.15) × 10−3. (27)

From (26) and (27), neglecting other possible decays of
intermediate ι, there follows

B(pp̄ → π+π−ι) = (4.0 ± 0.9) × 10−3. (28)

Analysis of the results presented by OBELIX [7] allows
one to determine the quota of K∗K from the all allowed
KKπ modes:

B(pp̄ → π+π−ι, ι → K∗K)
B(pp̄ → π+π−ι, ι → KKπ)

= 0.35 ± 0.04. (29)

On the basis of (27)–(29) one can obtain the following
important result:

B(pp̄ → π+π−ι, ι → K∗K)
B(pp̄ → π+π−ι)

= 0.16 ± 0.04. (30)

It is clear, that with the neglected resonance properties
of ι and K∗ the left hand size in (30) is the sought-for

branching B(ι → K∗K). However due to the resonance
properties there may be considerable corrections. In order
to estimate them let us consider the relations

B(pp̄ → π+π−ι, ι →K∗K) = ξ∗B0(pp̄ → π+π−ι)B, (31)

B(pp̄ → π+π−ι, ι →“other”)= ξ̄B0(pp̄ → π+π−ι) (1−B).
(32)

Here the single B is the sought-for branching B(ι →
K∗K), subscript “0” means that branching B0(pp̄ →
π+π−ι) is defined in a speculative case of the zero widths
of ι and K∗. The “other” in (32) means that all other
decays of ι are implied, i.e. all decays which occur not via
the K∗K. Quantities ξ∗ and ξ̄ are the factors that guar-
antee the equality in the relations. Summing up (31) and
(32) one gets

B(pp̄ → π+π−ι) = B0(pp̄ → π+π−ι)
[
ξ∗B + ξ̄(1 −B)

]
.

(33)
From (31) and (33) one obtains

B(pp̄ → π+π−ι, ι → K∗K)
B(pp̄ → π+π−ι)

=
ξ∗B

ξ∗B + ξ̄(1 −B)
. (34)

Equating the right hand sizes in (30) and (34), and using
the property that ξ∗ and ξ̄ are the functions on B (see
Appendix 1), we obtain the true value of the branching:

B(ι → K∗K) = 0.40 ± 0.08. (35)

Let us emphasize, that this result is more than twice as
large as the naive value in (30). Correction factors ξ∗ and
ξ̄ turn out to be 0.60 ± 0.01 and 2.13 ± 0.03, respectively.
(Both they are far from 1, as well.) Multiplying (35) on
the total width we come to the final result

Γ exp(ι → K∗K) = 29.2 ± 6.1 MeV. (36)

This result may be compared with the theoretical esti-
mates (24) and (25).

7 Discussion and conclusions

The main results of the present work are the theoretical
estimates (24) and (25) for the partial width Γ (ι → K∗K)
— the first one for case when ι is mainly a glueball, and
the other one for case when ι is mainly a radial excitation
of the ss̄ state. (An intermediate case, when ι involves
comparable contributions of the glueball and the excited
ss̄ state is, apparently, not allowed by the data if ι is a
single resonance.) Since the above estimates are obtained
in χPT approach, their status is close to being model-
independent. The assumptions used in deriving the esti-
mates are as follows. First of all, we suppose that ι arises
due to the mixing of the glueball, the isoscalar lowest qq̄
states (η, η′), and their radial excitations. Then, we iden-
tify the excited nn̄ state with η(1295), and suppose that
K(1460) is the radial excitation of the K meson. These as-
sumptions are in agreement with the modern understand-
ing of the 0−+ spectrum [2,16] and may be verified by
independent methods.
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Another important new result is the estimate of Γ (ι →
K∗K) obtained from the combined OBELIX and Crystal
Barrel data. The idea to use specifically the OBELIX and
Crystall Barrel data is caused by the following reasons.
First, these data were collected with the best statistics of
ι. Second, and this point is more important, from kine-
matic reasons the creation of ι with its subsequent decay
to ρρ and ωω in the pp̄ annihilation at rest is strongly sup-
pressed. As a result, one need not take into account these
decays while extracting Γ (ι → K∗K) from the data. This
property essentially simplifies the analysis based on the
pp̄ annihilation data as compared, for example, with the
analysis based on the J/ψ radiative decays.

An important technical point of our analysis is that
it accurately takes into account the resonance properties
of ι and K∗. This point is indeed important since all the
decays, considered above, occur near the threshold. We
use the relativistic Breit-Wigner amplitude [5] which takes
into account the dependence of the partial widths of the
resonances on their (varying) invariant masses. As a result,
for example, the true value of B(ι → K∗K) turns out to
be more than twice as large as the “naive” value, which
follows directly from the data without taking into account
the resonance properties of ι and K∗.

Comparing the theoretical estimate (24) with the ex-
perimental estimate (36) we conclude that with the one-
resonance structure of ι it may not be a glueball, since
the ratio of the theoretical estimate to the experimental
one does not exceed 0.28 ± 0.13, which is 5.5σ less than
1. However when ι is mainly a radial excitation of the
ss̄ state the theoretical estimate agrees with the experi-
mental one. So, taking also into account the results of [4],
one may conclude that the ss̄ interpretation of ι is pos-
sible. However, in accordance with [4], it is only possible
when there is noticeable mixing between the ss̄ excited
state and the higher mass PS glueball (with the mixing
angle about 18o). The present study modifies this picture
somewhat. Namely, we find that as soon as ι involves a
noticeable glueball contribution it must involve also a no-
ticeable ground-state qq̄ contribution. This (qualitative)
result follows from the fact that the direct PS −G mixing
is suppressed in χPT, but it may be realized indirectly
via the PS − φ0 and φ0 − G mixings. Of course, to de-
scribe quantitatively this effect one has to perform a more
detailed phenomenological investigation, which might be
similar to that of [4] but should take into account the re-
sults of the present study.

In conclusion, let us discuss whether our results are
applicable to the case when there are two PS resonances
in the ι region. Because the two components of ι are most
likely the PS glueball and the ss̄ excited state that are
strongly mixed [24], our estimate (24) is no longer valid in
this case since the estimate (23) becomes incorrect. The
estimate (25) remains valid, but it may be applied only
to the lower ι state. For the upper ι state, the analogous
estimate is more than 200 MeV due to increased phase
volume. So, both theoretical estimates agree with the ex-
perimental ones which in this case may be taken directly
from the OBELIX results [7]. (Since in the case of the two-

resonance structure of ι the upper ι decays almost only to
K∗K, while the lower ι almost does not decay into this
channel). So, to specify the nature of the both ι’s one needs
an additional investigation which must take into account
the strong mixing between the lower and upper ι states.
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Appendix 1

This Appendix collects the formulae of calculation of the
correction factors ξ, ξ∗, and ξ̄.

Let us begin with calculation of ξ which is for the decay
ι → K∗K. Let Γ (ι → K∗K;E) be the true partial width
of ι which mass is equal to E, and Γ0(ι → K∗K;Mι)
be the speculative partial width which is taken with zero
width of the K∗. Then we can write

Γ (ι → K∗K;E) = ξ(E)Γ0(ι → K∗K;Mι). (A1.1)

From (A1.1) there follows

ξ(E) =
∫ E−mK

mK+mπ

2E′dE′ W (K∗;E′) ×
(
MK∗

E′

)2 [ K(E;E′,mK)
K(Mι;MK∗ ,mK)

]3

. (A1.2)

Here K(M ;m1,m2) is the module of the three-momentum
of particle m1 (m2) in the rest frame of M in the decay
M → m1 +m2. W (K∗;E) is the Breit-Wigner function,

W (K∗;E) =
1
π

E Γ (K∗;E)
[M2

K∗ − E2]2 + [E Γ (K∗;E)]2
. (A1.3)

Let us emphasize, that the correct Breit-Wigner function
involves the factor E before the width, and the width must
be dependent on the varying invariant mass E of the reso-
nance [5]. In case of the K∗ meson the latter dependence
of the width is as follows (r = 0.002 MeV−1)

Γ (K∗;E) = Γ (K∗;MK∗)
M2

K∗

E2

[ K(E;mK ,mπ)
K(MK∗ ;mK ,mπ)

]3

×
1 + [rK(MK∗ ;mK ,mπ)]2

1 + [rK(E;mK ,mπ)]2
. (A1.4)

With help of (A1.2)–(A1.4) one can calculate ξ(E). In
particular, with E = 1416 MeV one obtains ξ = 1.56.

The decays pp̄→π+π−ι with ι→K∗K, and pp̄→π+π−ι
with ι→“other” may be analysed in the similar way. So,
let Γ (ι;E) be the total width of ι which mass is equal to
E. Separating K∗K from the “other” decay modes, one
may represent Γ (ι;E) in the form

Γ (ι;E) = Γ (ι → K∗K;E) + Γ (ι → “other”). (A1.5)
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Here we take into account the property that Γ (ι →
“other”;E) is the slowly varying function and neglect its
dependence on E.4 In this approximation

Γ (ι → “other”) = (1 −B)Γ (ι;Mι) (A1.6)

with B = B(ι → K∗K;Mι). The rapidly varying function
is

Γ (ι → K∗K;E) =
ξ(E)
ξ(Mι)

BΓ (ι;Mι). (A1.7)

In accordance with (A1.5) let us introduce Breit-Wig-
ner functions

W (ι → K∗K;E) =
1
π

E Γ (ι → K∗K;E)
[M2

ι − E2]2 + [E Γ (ι;E)]2
,

(A1.8)

W (ι → “other”;E) =
1
π

E Γ (ι → “other”)
[M2

ι − E2]2 + [E Γ (ι;E)]2
.

(A1.9)
With help of these functions the correction factors ξ∗ and
ξ̄ introduced in (31) and (32) may be represented as

ξ∗ =
1
B

∫ Mpp̄−2mπ

2mK+mπ

2EdE W (ι → K∗K;E)×
∫
dΦ3(E,mπ,mπ)/

∫
dΦ3(Mι,mπ,mπ), (A1.10)

ξ̄ =
1

1−B
∫ Mpp̄−2mπ

2mK+mπ

2EdE W (ι → “other”;E)×
∫
dΦ3(E,mπ,mπ)/

∫
dΦ3(Mι,mπ,mπ). (A1.11)

Here
∫
dΦ3(E,mπ,mπ) is the phase volume of the annihi-

lation pp̄ → Eππ at rest, which is corrected by the pion
derivatives in the decay vertex, see Appendix 3.

Appendix 2

In this Appendix we estimate the contribution of the chan-
nel ι → ρρ to the annihilation of pp̄-atom to ππι. Namely,
we estimate quantity R, where

R =
B(pp̄ → π+π−ι, ι → ρρ)

B(pp̄ → π+π−ι)
. (A2.1)

At first, let us suppose that the ρρ contribution is small,
R � 1. (Then one may use the formulae of Appendix 1.)
Putting to use [5], we can write

R =

∫ Mpp̄−2mπ

4mπ

2EdE W (ι → ρρ;E)
∫
dΦ3(E,mπ,mπ)∫ Mpp̄−2mπ

4mπ

2EdE W (ι;E)
∫
dΦ3(E,mπ,mπ)

.

(A2.2)
4 Indeed, except ι → ρρ and ι → ωω, all decays ι → “other”

occur far from the threshold. Concerning ι → ρρ and ι → ωω,
their contributions are too weak in case of the pp̄ annihilation
at rest, see Appendix 2

Here W (ι;E) is the sum of (A1.8) and (A1.9), and the
function W (ι → ρρ;E) is

W (ι → ρρ;E) =
1
π

E Γ (ι → ρρ;E)
[M2

ι − E2]2 + [E Γ (ι;E)]2
. (A2.3)

The partial width Γ (ι → ρρ;E) is as follows [5]

Γ (ι → ρρ;E) = g2
ιρρ

8π

∫ E−2mπ

2mπ
2E′dE′ W (ρ;E′) ×∫ E−E′

2mπ
2E′′dE′′ W (ρ;E′′)×

[K(E;E′, E′′)]3 [1 − f(E,E′, E′′)], (A2.4)

where f stands for the interference term, and the function
W (ρ;E) is defined analogously to (A1.3), (A1.4).

In order to estimate g2
ιρρ/8π let us take into account

the experimental bound Γ (ι → γγ) ×B(ι → KK̄π) < 1.2
kev [25]. Since due to (35) B(ι → KK̄π) > 0.4, from this
bound there follows Γ (ι → γγ) < 3 kev. Then, putting to
use [5] and the VMD model, one can obtain Γ (ι → ρρ) < 2
MeV. From this bound, and, again, with help of [5], we
obtain g2

ιρρ/8π < 0.55 GeV−2. This result together with
(A2.2)–(A2.4) implies

R < 10−3. (A2.5)

So, the ι → ρρ contribution to the annihilation pp̄ →
ππι at rest is really negligible. It is clear, that for ι → ωω
there should be the similar result. Moreover, it should be
more strong since the width of the ω is much less than the
width of the ρ.

Appendix 3

Since the decay of pp̄-atom to ππι occurs near the thresh-
old, it is describable in the framework of χPT. Let us build
up the corresponding chiral effective Lagrangian.

With this purpose let us take into account the specific
properties of this decay [7]. The first property is that the
annihilation pp̄ → ππι at rest is possible only from the iso-
singlet 1S0 state of the pp̄-atom. So, its interpolating field,
PN , must transform like PN . The second property is that
the ππ system is produced in S-wave. Therefore, the pion
fields may contribute to the Lagrangian either without
derivatives or in combinations like ∂µ π∂µπ. Finally, since
the relative angular momentum between the ι and the
ππ system is also equal to zero, the interpolating field of ι
and that of ππ should contribute without derivatives. The
above properties determine the following chiral-invariant
effective Lagrangian:

LPPππ = g1 〈uµuµ{P, P}〉 + g2 〈[P, uµ][P, uµ]〉
+ g3 〈χ+{P, P}〉 + g4 〈χ−P〉 + O(p4). (A3.1)

Here P stands for the baryon-antibaryon atom, P stands
for the nonet of the excited qq̄ states and φ0. (The glueball
interpolating field does not contribute to the Lagrangian
due to the reasons discussed in Sects. 2 and 4. Note, the
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latter property does not affect the final result.) In what
follows we consider P = PNλN/2.

Puttingm2
π = 0, one can show that only φ0 contributes

to pp̄ → ππι. (Generally speaking, the excited state PN

can contribute, too, but it does not contribute to ι.) After
the superfluous terms are rejected, in right hand size in
(A3.1) there remain

g1
2F 2 PNφ0 (

∂µπ
0∂µπ

0 + 2 ∂µπ
+∂µπ

−)
. (A3.2)

From (A3.2) there follows the sought-for result

LN ιππ ∝ PNP ι
(
∂µπ

0∂µπ
0 + 2 ∂µπ

+∂µπ
−)
. (A3.3)
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